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_____________________________________________________________

An intense pulsed electron beam traversing a thin metal plate
creates a volume of dense plasma. Current flows in this plasma
as a result of the charge and magnetic field introduced by the
relativistic electrons. A magnetic field may linger after the
electron beam pulse because of the conductivity of the
material. This field decays by both diffusing out of the
conducting matter and causing it to expand. If the magnetized
matter is of low density and high conductivity it may expand
quickly. Scaling laws for this acceleration are sought by
analyzing the idealization of a steady axisymmetric flow. This
case simplifies a general formulation based on both Euler's and
Maxwell's equations. As an example, fluid with conductivity
s = 8 ´ 104 Siemens/m, density r = 8 ´ 10-3 kg/m3, and initially
magnetized to B = 1 Tesla can accelerate to v = 104 m/s within
a distance comparable to L = 1 mm and a time comparable to
smL2 = 100 ns, which is the magnetic diffusion time. If instead,
s = 8 ´ 103 Siemens/m and r = 8 ´ 10-5 kg/m3 then v = 105 m/s
with a magnetic diffusion time smL2 = 10 ns. These idealized
flows have RM = smvL = 1, where RM is the magnetic Reynolds
number. The target magnetizes by a thermal electric effect.

_____________________________________________________________

1111))))    MMMMoooottttiiiivvvvaaaattttiiiioooonnnn    ffffoooorrrr    tttthhhhiiiissss    ssssttttuuuuddddyyyy

An electron beam accelerator is being designed for the purpose
of generating an x-ray pulse train of great intensity from a metal
target. This work involves a number of DOE laboratories. Of concern
is how the outflow of material from this target may degrade the
radiation pulse train by interfering with the trajectories of the
accelerated electrons. Three types of outflow are possible: 1) prompt
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ejection of positive ions during the course of any pulse, see
References 1Ñ3, 2) electromagnetic acceleration of target material,
and 3) thermal acceleration of target material, see References 4Ñ8.

The most significant effect to the target is the removal of
material by thermal acceleration Ñ this leaves a hole in the plate. The
volume of material heated by the electron beam exhausts into a
vacuum and reaches a maximum velocity of twice the initial speed of
sound, typically near 10 mm/ms (10 km/s). The suddenness of the
expansion can lead to a departure from thermal equilibrium between
the neutral and ionized portions of the flow. Of the three outflow
mechanisms noted in the previous paragraph, this effect is the one
most clearly observed and calculated, see References 4Ñ8.

Experiments are being conducted at the Integrated Test Stand
(ITS) accelerator at the Los Alamos National Laboratory, and the
Experimental Test Accelerator II (ETA-II) at the Lawrence
Livermore National Laboratory to establish beyond doubt the
presence of "positive ion backstreaming" during the course of a single
electron beam pulse. These are challenging experiments. A physical
consequence of ion backstreaming is that the electron beam
approaching the target plate will experience a reduction of its space
charge, and pinch as a result of its own jjjj ´ BBBB force. The pinched beam
reaches a minimum diameter and then expands before striking the
target. The expectation is that the spot size at the target will grow
during the course of the pulse, and the intensity of the resulting x-
ray emission will diminish. Experiments are aimed at measuring
these changes in spot size and intensity. Ion backstreaming is
expected to be the earliest and fastest material ejection, with a
velocity as high as 10 m/ms (104 km/s). See References 1Ñ3. It
appears that a superthermal outflow of plasma may have been
observed by a microwave interferometer measuring electron density
upstream of the target, this work is to be presented later this year,
see Reference 9.

This report describes the possibility of electromagnetic
acceleration of neutral conducting material from the target. Can
plasma leave the target at speeds expected for ion backstreaming? If
so then the electron beam might not pinch as anticipated. My first
attempt to quantify this effect was far too speculative (noted as
Reference 10), but it lead to the work to be presented here, in which
every effort has been made to be methodical and rigorous.
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The plan of this report is as follows. General equations for the
motion of an inviscid conducting fluid with embedded sources of
current and charge Ñ the electron beam Ñ are formed by combining
Maxwell's equations and the Euler equation with a Lorentz force. This
occupies sections 2Ñ6 of this report. A flow that can be described
easily is presented in section 7, it involves the steady motion of an
incompressible, conducting fluid with an initial magnetic field and no
source terms. This flow is an idealization where conducting fluid
retains a magnetization after the passage of an electron beam pulse.
In section 8, the velocity and magnetic field are solved as functions
of distance from the plate for the specific case of axisymmetric flow
with azimuthal magnetic field. Two numerical examples of this case
are shown in section 9. Section 10 is a discussion of the effects of
conductivity, density, and initial magnetization upon the ultimate
fluid speed. Section 11 describes how the target initially magnetizes.
Section 12 states conclusions. The Appendix describes charged flow.

2222))))    GGGGoooovvvveeeerrrrnnnniiiinnnngggg    eeeeqqqquuuuaaaattttiiiioooonnnnssss

Consider an electron beam as a source of pulsed charge density
r0(rrrr, t) and current density jjjj0(rrrr, t) within a conducting fluid.
Maxwell's equations follow,

div DDDD = r0(rrrr, t), (1)

curl    EEEE    = -
¶BBBB

¶t
, (2)

div BBBB = 0, (3)

curl    HHHH    = jjjjT + 
¶DDDD

¶t
. (4)

The constitutive relations are:

DDDD = eEEEE, (5)

BBBB = mHHHH, (6)
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where e = 8.854 ´ 10-12 farad/m, and m = 4p ´ 10-7 henry/m, the
permeability of non-magnetic material.

The total current density jjjjT(rrrr, t) is the sum of the electron
beam current density and current flow in the conducting fluid,

jjjjT    = jjjj0    + jjjj = curl BBBB0
m

 + s(EEEE + vvvv ´ BBBB). (7)

The electron beam current density within the fluid is equivalent to
the curl of a source magnetic induction BBBB0(rrrr, t). Current flow in the
fluid is assumed to follow an Ohm's law with a single velocity
parameter. The implicit assumption here is that any difference in the
drift velocities of electrons and positive ions, which is required to
produce current, is small in comparison to their motion with the
material. This is true if the physical scale of the system is large, or if
the electron density is large, see Reference 11 for a discussion of this
point.

If r is the mass density, the hydrodynamic equation of
continuity is

¶r

¶t
 + div(rvvvv) = 0. (8)

The momentum equation is

r(
¶vvvv

¶t
 + vvvv ×Ñvvvv) = -Ñp + jjjj ´ BBBB. (9)

The conducting fluid moves in response to a pressure gradient, a
result of heating by the electron beam, and its own Lorentz force.
This is an ideal fluid, viscosity and thermal conductivity are absent.

3333))))    CCCCuuuurrrrrrrreeeennnntttt    ddddeeeennnnssssiiiittttyyyy

By combining equations (4) and (7), the current density in the
fluid is seen to be
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jjjj = curl(BBBB - BBBB0
m

) - 
¶DDDD

¶t
, (10)

and by taking the divergence of (10) with an eye to equation (1),

¶r0

¶t
 + div(jjjj) = 0. (11)

If the temporal variations of r0 and DDDD occur at a rate much lower
than the plasma frequency of the material s/e they can be neglected,
as neither relativistic mass flow nor electromagnetic waves are being
considered. The current density jjjj = s(EEEE + vvvv ´ BBBB) arises to reduce the
difference in the magnetic field HHHH - HHHH0 = (BBBB - BBBB0)/m within the
conducting fluid.

4444))))    SSSSccccaaaallllaaaarrrr    aaaannnndddd    vvvveeeeccccttttoooorrrr    ppppooootttteeeennnnttttiiiiaaaallllssss

By expanding equation (11) with the definition of jjjj, and
assuming "slow" time variation as described in section 3, the
following is determined,

div(vvvv ´ BBBB) = 
-r0

e
. (12)

By expanding equation (2) with EEEE = jjjj/s - vvvv ´ BBBB, and using equation
(10) for jjjj, the following is determined,

curl(vvvv ´ BBBB) = 
¶BBBB

¶t
 - 

Ñ
2(BBBB - BBBB0)

sm
. (13)

The vector relation curl[curl(AAAA)] = grad[div(AAAA)] - Ñ2(AAAA) was used to
find equation (13). The cross product vvvv ´ BBBB can be defined in terms
of a scalar potential f and vector potential Y as follows,

vvvv ´ BBBB = Ñf + Ñ ´ Y. (14)

The divergence of (14) shows that
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Ñ
2

f = div(vvvv ´ BBBB), (15)

and the curl of (14) shows that

-Ñ
2

Y = curl(vvvv ´ BBBB), (16)

where Y is assumed to have zero divergence. By comparing (12) with
(15), and (13) with (16) it is seen that the scalar potential is a
consequence of the charge density, while the vector potential arises
from the diffusion of BBBB through the conducting fluid. Notice that the
diffusion of BBBB is a process paced by the conductivity.

5555))))    UUUUnnnniiiiffffoooorrrrmmmm    ccccoooonnnndddduuuuccccttttiiiivvvviiiittttyyyy    fffflllloooowwww

A uniform conductivity, which could vary in time, has been
assumed in the previous sections. The equations describing the flow
of such a fluid, with parameters vvvv, BBBB, r, and p are (8), (12), (13), the
momentum equation

r(
¶vvvv

¶t
 + vvvv ×Ñvvvv) = -Ñp + curl(BBBB - BBBB0

m
) ´ BBBB, (17)

and an equation of state p(r).

6666))))    NNNNoooonnnn----uuuunnnniiiiffffoooorrrrmmmm    ccccoooonnnndddduuuuccccttttiiiivvvviiiittttyyyy    fffflllloooowwww

If the conductivity can vary spatially, then equation (12) is
replaced by

div(vvvv ´ BBBB) = 
-r0

e
 - curl(BBBB - BBBB0)

sm
 ×

Ñ s
s

, (18)

and equation (13) is replaced by

curl(vvvv ´ BBBB) = 
¶BBBB

¶t
 - 

Ñ
2(BBBB - BBBB0)

sm
 + curl(BBBB - BBBB0)

sm
 ´ 

Ñs
s

. (19)
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7777))))    SSSStttteeeeaaaaddddyyyy    iiiinnnnccccoooommmmpppprrrreeeessssssssiiiibbbblllleeee    uuuunnnniiiiffffoooorrrrmmmm    nnnneeeeuuuuttttrrrraaaallll    fffflllloooowwww

An idealized flow that is steady, incompressible, neutral, and
with uniform conductivity is analyzed in order to gain some physical
insight. Its governing equations are:

div(vvvv ´ BBBB) = 0, (20)

curl(vvvv ´ BBBB) = - 
Ñ

2(BBBB - BBBB0)
sm

, (21)

div(vvvv) = 0, (22)

r(vvvv ×Ñvvvv) = -Ñp + curl(BBBB - BBBB0
m

) ´ BBBB. (23)

From (20) and (21) vvvv ´ BBBB = curl(BBBB - BBBB0)/sm. The cross product
-BBBB ´ (vvvv ´ BBBB) = -vvvvB2 + BBBB(BBBB×vvvv) is the Lorentz force divided by the
conductivity. The nonlinear velocity term in the momentum equation
can be written as vvvv×Ñvvvv = Ñ(v2/2) - vvvv ´ curl(vvvv). The vorticity curl(vvvv)
is zero by equation (22). Two expressions for the component of
velocity transverse to the magnetic induction are found from the
results just stated, and they are equated below,

vvvv - BBBB
BBBB ×vvvv

B 2
 = -1

sB 2
Ñ(

rv2

2
 + p) = 

-curl(BBBB - BBBB0) ´ BBBB

smB 2
. (24)

By using the vector relation shown above for vvvv×Ñvvvv to expand
BBBB ´ curl(BBBB) in equation (24), a Bernoulli theorem for this flow can be
stated as

Ñ(
rv2

2
 + p + B

2

2m
) = 

BBBB ×ÑBBBB
m

 - 
curl(BBBB0) ´ BBBB

m
. (25)

The total energy density of the fluid, a sum of kinetic, thermal, and
magnetic contributions, changes along the flow as a result of sources
of magnetic induction (BBBB0), and gradients of the magnetic induction
parallel to itself.
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If the energy density is conserved (BBBB0 = 0, BBBB×ÑBBBB = 0) then the
magnitude of velocity at any point can be referred to conditions at a
static origin, with initial conditions p(rrrr = 0) = p1, and B(rrrr = 0) = B1,

v  = 2
r

[(p1 - p) + B1
2 - B 2

2m
] . (26)

If there is no component of velocity parallel to the magnetic
induction (vvvv ^ BBBB) then

1

sB 2
ÑB 2

2m
 = 2

r
[(p1 - p) + B1

2 - B 2

2m
] . (27)

Equation (27) gives B2 as a function of position.

8888))))    AAAAnnnn    aaaaxxxxiiiissssyyyymmmmmmmmeeeettttrrrriiiicccc    fffflllloooowwww

Consider an axisymmetric flow of the type described in section
7, with velocity and azimuthal induction as follows,

vvvv = vr(r, z)iiiir + vz(r, z)iiiiz, (28)

BBBB = Bq(r, z)iiiiq. (29)

Imagine that the electron beam pulse has heated and magnetized
target material, which now expands to dissipate its initial energy
density of p1 + B12/2m. Assume p quickly goes to zero close to the
origin and all thermal energy becomes kinetic at a speed of vT where
vT2 = 2p1/r. Assume that we are only interested in flow near the axis
where |vr(r, z)| << |vz(r, z)| and Bq(r, z) ® Bq(z). An equation for Bq(z)
follows from equation (27) by assuming that positive Bq(z) decays
along negative coordinate z,

¶Bq

Bq (rmvT
2 + B1

2) - Bq
2

 = 
sm

rm
¶z . (30)

If B22 = rmvT2 + B12 and zM2 = (rm)/(smB2)2, the integral of equation
(30) is
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1 + 1 - (Bq

B2
)
2

(Bq

B2
)

 = 
1 + 1 - (B1

B2
)
2

(B1

B2
)

 exp(-z
zM

), (31)

and the corresponding velocity magnitude is given by equation (26),

v  = vr
2 + vz

2 = B2
2 - Bq

2

rm
. (32)

Recall that we have assumed this velocity magnitude to be primarily
that of the axial component. Equation (22) for continuity requires a
radial velocity component as this is a constant density flow that
accelerates axially.

It is probably best to apply these results only within an axial
extent comparable to the diameter of the electron beam, where both
cylindrical and spherical flows would be similar and the variation in
density may not be too drastic.

9999))))    TTTTwwwwoooo    eeeexxxxaaaammmmpppplllleeeessss

FFFFiiiigggguuuurrrreeee    1111 shows the axial variation of Bq(z) from equation (31),
and velocity magnitude |v(z)| from equation (32) for example 1,
which has the following parameters: conductivity s = 8 ´ 104

Siemens/m, density r = 8 ´ 10-3 kg/m3, thermal velocity vT = 1 km/s,
and an initial magnetic induction of Bq(0) =  B1 =  1 Tesla. The scale
length for this acceleration is zM = 1 mm, and it reaches a velocity
magnitude of |v(-3zM)| = 10 km/s. The magnetic diffusion time based
on length scale zM is smzM2 = 100 ns.

Example 2 differs from the previous example in that s = 8 ´ 103

Siemens/m and r = 8 ´ 10-5 kg/m3. In this case the final velocity
magnitude is |v(-3zM)| = 100 km/s, the scale length for the
acceleration is again zM = 1 mm, and the characteristic diffusion time
is smzM2 = 10 ns. The axial variations of Bq(z) and |v(z)| look the same
as those of Figure 1, except that magnitude |v(-3zM)| is ten times
higher for example 2. FFFFiiiigggguuuurrrreeee    2222 shows the elapsed time to a distance,
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assuming the velocity magnitude is purely axial, for example 1 at the
top and example 2 below.

Fully ionized plasma with a temperature of 11 eV will have a
Spitzer (1962) conductivity [ln(L) = 8.8] equal to that of example 1;
for example 2 the equivalent temperature is 2.4 eV. Assuming the
flows are copper, the particle densities for examples 1 and 2,
respectively, are 8 ´ 1016 cm-3 and 8 ´ 1014 cm-3.

11110000))))    RRRRuuuulllleeeessss----ooooffff----tttthhhhuuuummmmbbbb

The previous examples can hardly encompass the involved
process of heating, magnetizing, and accelerating target material
simultaneously by electron beam impact. However, they do suggest
some rules-of-thumb for estimating the properties of matter
accelerated electromagnetically Ñ assuming this occurs at the target.

The maximum flow velocity can be estimated from equation
(32), and is seen to be a combination of the thermal and Alfv�n
velocities based on initial conditions,

v  £ B1
2 

rm
 + vT

2  = vA
2 + vT

2 . (33)

The flows of greatest interest are those with vA2 >> vT2. For such
flows the scale length of the acceleration, as modeled in section 8, is

zM = 
rm

smB1
 = 1

smvA
. (34)

The time scale for the magnetic field lines in the material to diffuse
away is comparable to the time scale for the material to accelerate
electromagnetically. This characteristic diffusion time is

tM = smzM
2. (35)

From (33)Ñ(35) we can deduce several equivalent expressions
for vA,
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vA = 1
smzM

 = B1
rm

 = zM

tM
. (36)

The first of the expressions in equation (36) can be written as the
magnetic Reynolds number, a dimensionless product here equal to
one,

RM = smvAzM = 1. (37)

The magnetic field changes over time in high magnetic Reynolds
number flow by being swept along with the motion. Magnetic
diffusion controls the rate of change of the magnetic field when RM is
much less than unity. Diffusion and transport of magnetic field lines
are comparable effects when RM is near unity. It seems reasonable to
expect the electromagnetic acceleration of target material to be a
flow with RM = 1. The effect of magnetic Reynolds number can be
seen mathematically by transforming equation (13), for the evolution
of BBBB(rrrr, t), into a dimensionless form.

The practical conclusion of this analysis is that equations (36)
and (37) can be used as rules-of-thumb for estimating how material
density r, electrical conductivity s, initial magnetization B1, and scale
length zM influence the velocity achieved by electromagnetic
acceleration when |v| = vA >> vT.

11111111))))    MMMMaaaaggggnnnneeeettttiiiizzzziiiinnnngggg    tttthhhheeee    ttttaaaarrrrggggeeeetttt

Is it possible to magnetize the target during the course of a
single pulse? If electromagnetic acceleration is to occur then a large
magnetic induction must be infused into the target during the 50 ns
to 100 ns period of the pulse. Diffusion of the vacuum field of the
electron beam into the solid target is too slow, the diffusion time
smL2 is longer than the pulse. Rapid magnetizing can occur by a
thermal electric effect. The large temperature gradient, generated as
a result of the radial profile of the electron beam, can produce a
significant magnetic field in the target during the course of a single
pulse. The spontaneous generation of magnetic fields by collisional
and thermal electric effects is described in a recent report, see
Reference 12.
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Consider static, neutral, conducting material at constant
density. Equation (17) for momentum reduces to a balance between
the pressure gradient and the Lorentz force, Ñp = jjjj ´ BBBB. By using
p = kNT and jjjj = curl(BBBB - BBBB0)/m, where k = 1.38054 ´ 10-23 J/¡K and
the particle density N is uniform, then

jjjj = 
kN(BBBB ´ ÑT)

B 2
 - 

BBBB(BBBB ×jjjj)

B 2
. (38)

The pressure gradient, in this case a temperature gradient in uniform
material, causes a current to flow transverse to the magnetic
induction. This thermal electric current is called a "Nernst term" in
Reference 12, where it is noted that "Nernst convection of the
magnetic field by the heat flux¼can result in a local magnification of
the field." FFFFiiiigggguuuurrrreeee    3333 shows an example of isotherms in a target.

A single species, ideal fluid model is inadequate to simulate the
simultaneous heating and magnetizing of the target by an electron
beam. To include effects such as Nernst convection it is better to use
a multi-species model with a "generalized Ohm's law" in place of
equation (7) for the current density. References 12Ñ16 each describe
the generalized Ohm's law. The single species, ideal fluid model is
used in this section to keep the discussion simple.

Assume our idealized magnetizing occurs with a conductivity
that depends only on temperature so that Ñs || ÑT, and also assume
that jjjj ^ BBBB and jjjj ^ Ñs. The vectors BBBB, ÑT, and jjjj are arranged like a
bicycle wheel: BBBB is along the hub, ÑT are the spokes, and jjjj is the rim
and tire. Equation (19) gives the evolution of BBBB with a non-uniform
conductivity as assumed here,

¶BBBB

¶t
 = 

Ñ
2(BBBB - BBBB0)

sm
 + 

kN(Ñs ×ÑT)

(sB)2
BBBB. (39)

The rate of change of BBBB is due to leakage through the material and a
thermal electric source. The ratio of the thermal electric term to the
leakage term has a magnitude comparable to the ratio of thermal to
magnetic pressure
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b = 
2mkNDT

B 2
 (40)

when BBBB varies on the same length scale as the temperature
difference DT. The thermal electric term will overwhelm the leakage
term during the pulse because of the combined effects of a large
temperature gradient and a high density.

An estimate of the rate-of-rise of B at early times follows from
(39) by ignoring the leakage term and assuming the thermal electric
parameters are steady,

B = 2kNDT

sL 2
t . (41)

If N = 8.5 ´ 1028 m-3, DT = 11605 ¡K, s = 5.8 ´ 107 S/m, and L = 10-3

m then B = 1 T in 2 ns. In this example N and s are the density and
conductivity of solid copper, while DT is a temperature difference of
1 eV. The magnetic diffusion time for this example is 73 ms, and the
ratio b = 3.4 ´ 104 with B = 1 T. Steady state has B = 185 T for b = 1.

The slow leakage of thermally generated high magnetic field to
the surface of the plate may propel low density conducting material
to high speed.

11112222))))    CCCCoooonnnncccclllluuuussssiiiioooonnnnssss

1) The target quickly magnetizes by the thermal electric effect
because the electron beam creates large axial and radial
temperature gradients.

2) The leakage of magnetic field is slow because of the high
conductivity.

3) Electromagnetic acceleration can propel low density material to
high speed as the electron beam pulse decays.

4) Electromagnetic acceleration occurs as a RM = smvL = 1 flow.

5) Beam-in-target simulations may show superthermal outflow.
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AAAAppppppppeeeennnnddddiiiixxxx::::    sssstttteeeeaaaaddddyyyy    iiiinnnnccccoooommmmpppprrrreeeessssssssiiiibbbblllleeee    cccchhhhaaaarrrrggggeeeedddd    fffflllloooowwww

This appendix will describe how a charge source r0(rrrr, t) can
affect the flow. Charged flow is the counterpart to ion backstreaming
(see References 1Ñ3) from the perspective of this ideal fluid model.
By now both the limitations of the model and conclusions about
electromagnetic acceleration have been stated, here we simply
continue discussing the equations within the same context.

The governing equations here are:

div(vvvv ´ BBBB) = 
-r0

e
 - curl(BBBB - BBBB0)

sm
 ×

Ñ s
s

, (18)

curl(vvvv ´ BBBB) = 
-Ñ

2(BBBB - BBBB0)
sm

 + curl(BBBB - BBBB0)
sm

 ´ 
Ñs
s

, (42)

div(vvvv) = 0, (22)

r(vvvv ×Ñvvvv) = -Ñp + curl(BBBB - BBBB0
m

) ´ BBBB. (23)

Recall that mjjjj = curl(BBBB - BBBB0). Assume that jjjj ^ Ñs and that smL2 is
large, so that curl(vvvv ´ BBBB) = 0. With these assumptions the system
reduces to:

div(vvvv ´ BBBB) = 
-r0

e
, (12)

vvvv ´ BBBB = Ñf , (43)

Ñ(
rv2

2
 + p + B

2

2m
) = 

BBBB ×ÑBBBB
m

 - jjjj0 ´ BBBB. (25)

The charge source r0 establishes an electrostatic field -Ñf, and
flow is a -Ñf ´ BBBB drift. Assume that vvvv ^ BBBB, jjjj0 ^ BBBB, and BBBB×ÑBBBB = 0; and
define the energy density as

U = 
rv2

2
 + p + B

2

2m
. (44)
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The effect of the current source is to produce a gradient of energy
density ÑU = -jjjj0 ´ BBBB; for example, an axial current source and an
azimuthal magnetic induction are a Lorentz force equivalent to a
radial energy density gradient. The velocity and magnetic induction
here are seen to be:

vvvv = 
BBBB ´ Ñf

B 2
    , (45)

BBBB = 
jjjj0 ´ ÑU

j0
2

    . (46)

The velocity is reduced to a more primitive form by eliminating BBBB,

vvvv = -jjjj0
(Ñf ×ÑU)

ÑU2
. (47)

This shows a velocity in the direction opposite of the current source
(parallel to an electron beam) if the gradients in electrostatic
potential and energy density are parallel. If we imagine that
pressure has a strong gradient while both the kinetic and magnetic
energy densities are fairly uniform, then ÑU is given by the
temperature gradient, and the velocity is

vvvv = -jjjj0
(Ñf ×ÑT)

kNÑT2
. (48)

The following example provides one estimate of a velocity from
equation (48). A positive charge density r0 = en0 = 16 C/m3 has a
source particle density n0 = 1014 cm-3. A current density source
jjjj0 = -r0ciiiiz = -(5 ´ 109)iiiiz A/m2 has an equivalent charge density of
relativisitic electrons moving along positive iiiiz. Gradients occur over a
radial extent of L = 10-3 m. The average gradient of the electrostatic
potential is estimated as Ñf = -(1/4)(r0L/e)iiiir = -(4.5 ´ 108)iiiir V/m. A
temperature drop of 8.6 eV over L is equivalent to a gradient of
ÑT = -(108)iiiir ¡K/m. For density N = 8.5 ´ 1028 m-3 the velocity is
vvvv = (2 ´ 104)iiiiz m/s = (2)iiiiz cm/ms.
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In this case B = 2 ´ 104 T. If pressure at 8.6 eV were all
converted to magnetic flux then B = 543 T. This discrepancy only
underscores the limitations of the model and the cumulative
inaccuracy of all the assumptions. See the discussion and citations in
Reference 12 to appreciate the scope of a complete model.

Without a charge source there is no motion in the last example,
it reduces to a static thermal electric balance, as in equations (38) or
(46). The magnetic induction BBBB is in the opposite sense of the source
magnetic induction BBBB0, and it is larger. The direction of the charged
flow is with the electron beam because both the potential and the
temperature increase toward the axis.

This model suggests that positive charge on the target at the
entry point of the electron beam may be restrained by a large
magnetic field generated thermally.
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FFFFiiiigggguuuurrrreeee    lllleeeeggggeeeennnnddddssss

1) AAAAxxxxiiiiaaaallll    vvvvaaaarrrriiiiaaaattttiiiioooonnnn    ooooffff    eeeexxxxaaaammmmpppplllleeee    1111.... Bq(z)/(B1 = 1 Tesla) and |v(z)|
when s = 8 ´ 104 Siemens/m, r = 8 ´ 10-3 kg/m3, and vT = 1 km/s.
The scale length is zM = 1 mm, the characteristic diffusion time is
smzM2 = 100 ns, and the terminal speed is |v(-3zM)| = 10 km/s.

2) EEEEllllaaaappppsssseeeedddd    ttttiiiimmmmeeee    ttttoooo    ddddiiiissssttttaaaannnncccceeee.... Assumes the velocity magnitude
is purely axial; for example 1 at the top, and example 2 below.
Example 2 has s = 8 ´ 103 Siemens/m and r = 8 ´ 10-5 kg/m3; B1 and
vT as before. zM = 1 mm, smzM2 = 10 ns, and |v(-3zM)| = 100 km/s for
example 2. The axial variations look the same as Figure 1 except
|v(-3zM)| is ten times higher for example 2.

3) IIIIssssooootttthhhheeeerrrrmmmmssss    aaaatttt    tttthhhheeee    eeeennnndddd    ooooffff    aaaa    ppppuuuullllsssseeee.... This drawing is based on
a calculation by P. Pincosy of LLNL. A 1 mm FWHM, 20 MeV, 6 kA
electron beam of 60 ns duration traverses a 1 mm thick tantalum
plate. The dashed lines show the edge of the beam. Isotherms may
also be surfaces of constant pressure, conductivity, and charge.
Strong temperature gradients generate large magnetic fields from
thermally driven currents. Slow magnetic leakage may propel low
density surface plasma to superthermal speed.
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